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Introduction and Research Data Results

Understanding human mobility after major meteorological events is critical for disaster re-  Fig. 4a shows the change of L, regularization and total training loss over training. The model
sponse. We analyzed cellphone mobility data from the 143 hours following Hurricane lan’s  exhibits rapid initial convergence. The best model, marked in red, was saved at epoch 258, and
landfall using a novel unsupervised framework. We selected the mobility paths that originated  training was halted at epoch 288 after 30 epochs without improvement. L, regularization loss
In the landfall zone of Hurricane lan. To standardize each path, the recorded GPS locations  also decreases steadily over training. We then proceed to perform clustering on the latent space
within every given hour were averaged into a single representative locations. This research in-  {Z,}.

troduces a novel unsupervised framework to cluster sparse mobility trajectories by integrating )

spatial network context with semantic Point of Interest (POI) information. o e = Catnskrrarabas:
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Methodology

We tessellate the study area into hexagons and derive two 64-dim embeddings per cell via
Node2Vec [Grover and Leskovec(2016)] and nonlinearly dimension-reduced Gemma3 LLM em-
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bedding [Team(2025)]. 50 &
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gi = Node2Vec(G);, Sj=— Z AE(Gemma3(p)), Xnt = |Ship,o) || Ghipns)| € RO*T64 (@) Training loss curve for the Trajectory (b) Metrics for choosing the number of clusters.
Pi peP, Transformer Autoencoder. The plot shows the The different criterions are normalized and
combined training loss (blue curve) and the L2 converted such that a higher score indicates a
These vectors are modeled by a Attention-based Transformer Autoencoder, with loss at each ;epgolilr? rization loss (green dashed line) for each  more optimal cluster number.
epoch given below:
Zn :feﬂ(ﬁ(x'”'yliT)7 Xnt = [ dec(znﬂt Figure 4. Training results and clustering metrics
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> My nEiAnt - 2nt2 L ? Ewarmup ) N 2 Fig. 5a, 5b,and 5c visualize the unique temporal signature of a trajectory cluster. For trajectory n
- L in cluster i, the A% value associated with category p at time t is given as:
masked MSE warm-up L
The final step is a k-Means clustering on the latent space of the Machine Learning model above. Chpit > o Cmpit
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A%i,p,t — (Pcluster(iapa t) — Pglobal(pa t)) x 100

Fig. 1 shows a strong spatial correlation between trajectory points (a) and Points of Interest (b). ~ The A% allows us to define each cluster by its most significant activities over time.

This overlap allows us to use POl data as a proxy to infer travel intent [Nadiri et al. (2025)]. We Clictor 0 — 2% from Global Bacoline Cluster 1 8% from Global Baseline
also incorporate spatial graph embeddings to provide essential connectivity context for our [———— | i il | |||‘ '\r| |'I |I I 5 [ ': Pl ) |'l'|1'ﬂ I| : I 15
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(a) Trajectory point counts on a hex grid. (b) Point-of-interest counts on the same grid. R remommn - é
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Figure 1. Spatial distributions of POI and trajectory points across Florida, aggregated on a 1.25km useums, Hisarical Sies,and imia nstiutions I
hexagonal grid. The inset zooms into [27°39°N, 81°30°W] to highlight local density patterns. T esten LT T —— .
C Ooccurance neatmap 10r uster Z. - pLOt TOr e 5 clusters. e top —
POI heat for Cluster 2 d) t-SNE plot for the 3 clust The top M =500
Framework Overview representative trajectories were selected from
each cluster.
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Figure 5. Training results and clustering metrics
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v - Conclusions
Human Mobility Data Autoencoder > POI Encoding
(Hurricane fan Trajectories) Loss: Reconstruction 64-dim A 1. Robust Unsupervised Clustering: We employ a fully unsupervised framework to uncover
statistically distinct clusters directly from raw mobility trajectories. The resulting latent
e Network Data > Mothod: Nodssves > S eargim o embeddings exhibit high inter-cluster separation, demonstrating the model’s capacity to
r : ) dissect complex, unlabeled mobility patterns.
(L e TRy e eTon & Inegerem i o 2. Enhanced Interpretability & Causal Modeling Potential: By projecting trajectories into a
Construct Trajectory Sequence } [ concatenate Embeddings | | concise latent space, our method yields interpretable variables that can be readily
Batch size x 143 hours x 128-dim 128-dim . . 5 5 5
Y p Incorporated into downstream statistical analyses. These latent components form a rigorous
p 4 Trajectory Modeling & Cluster Analysis: 2 basis for future causal-inference studies.
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Figure 2. Unsupervised Trajectory Clustering Pipeline
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Figure 3. Trajectory Autoencoder Model. LayerNorm blocks are omitted for simplicity. Placeholderl

Spatial Statistics 2025 sizhe@wustl.edu



https://arxiv.org/abs/1607.00653
https://goo.gle/Gemma3Report
mailto:sizhe@wustl.edu

