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Introduction and Research Data

Understanding human mobility after major meteorological events is critical for disaster re-

sponse. We analyzed cellphone mobility data from the 143 hours following Hurricane Ian’s

landfall using a novel unsupervised framework. We selected the mobility paths that originated

in the landfall zone of Hurricane Ian. To standardize each path, the recorded GPS locations

within every given hour were averaged into a single representative locations. This research in-

troduces a novel unsupervised framework to cluster sparse mobility trajectories by integrating

spatial network context with semantic Point of Interest (POI) information.

Methodology

We tessellate the study area into hexagons and derive two 64-dim embeddings per cell via

Node2Vec [Grover and Leskovec(2016)] and nonlinearly dimension-reduced Gemma3 LLM em-

bedding [Team(2025)].
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These vectors are modeled by a Attention-based Transformer Autoencoder, with loss at each

epoch given below:
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The final step is a k-Means clustering on the latent space of the Machine Learning model above.

{zn}
cluster−−−−→ {cn}, cn = argmin

k
‖zn − µk‖2

Fig. 1 shows a strong spatial correlation between trajectory points (a) and Points of Interest (b).

This overlap allows us to use POI data as a proxy to infer travel intent [Nadiri et al. (2025)]. We

also incorporate spatial graph embeddings to provide essential connectivity context for our

analysis [Guan and Chen(2021)].

(a) Trajectory point counts on a hex grid. (b) Point-of-interest counts on the same grid.

Figure 1. Spatial distributions of POI and trajectory points across Florida, aggregated on a 1.25km

hexagonal grid. The inset zooms into [27°39’N, 81°30’W] to highlight local density patterns.

Framework Overview

Figure 2. Unsupervised Trajectory Clustering Pipeline

Figure 3. Trajectory Autoencoder Model. LayerNorm blocks are omitted for simplicity.

Results

Fig. 4a shows the change of L2 regularization and total training loss over training. The model

exhibits rapid initial convergence. The best model, marked in red, was saved at epoch 258, and

training was halted at epoch 288 after 30 epochs without improvement. L2 regularization loss

also decreases steadily over training. We then proceed to perform clustering on the latent space

{~zn}.

(a) Training loss curve for the Trajectory

Transformer Autoencoder. The plot shows the

combined training loss (blue curve) and the L2

regularization loss (green dashed line) for each

epoch.

(b) Metrics for choosing the number of clusters.

The different criterions are normalized and

converted such that a higher score indicates a

more optimal cluster number.

Figure 4. Training results and clustering metrics

Fig. 5a, 5b, and 5c visualize the unique temporal signature of a trajectory cluster. For trajectory n

in cluster i, the ∆% value associated with category p at time t is given as:

Pcluster(n, p, t) =
Cn,p,t∑

p′∈PTop15 Cn,p′,t
, Pglobal(p, t) =

∑
m Cm,p,t∑

p′∈PTop15
∑

m Cm,p′,t

∆%i,p,t = (Pcluster(i, p, t) − Pglobal(p, t)) × 100

The ∆% allows us to define each cluster by its most significant activities over time.

(a) POI occurrence heatmap for Cluster 0. (b) POI procurance heatmap for Cluster 1.

(c) POI occurance heatmap for Cluster 2. (d) t-SNE plot for the 3 clusters. The top M = 500

representative trajectories were selected from

each cluster.

Figure 5. Training results and clustering metrics

Conclusions

1. Robust Unsupervised Clustering: We employ a fully unsupervised framework to uncover

statistically distinct clusters directly from raw mobility trajectories. The resulting latent

embeddings exhibit high inter-cluster separation, demonstrating the model’s capacity to

dissect complex, unlabeled mobility patterns.

2. Enhanced Interpretability & Causal Modeling Potential: By projecting trajectories into a

concise latent space, our method yields interpretable variables that can be readily

incorporated into downstream statistical analyses. These latent components form a rigorous

basis for future causal-inference studies.
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