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Abstract

Large language models usually struggle with complex
mathematical questions. Previous research primarily fo-
cuses on incorporating supplementary tools or functionality
to provide the language models additional layers of context
needed to solve such queries. Building upon these existing
ideas, we propose an LLM that is capable of providing rel-
evant lemmas, definitions, and other antecedent theorems
that correspond to the input mathematical question. Specif-
ically, we fine-tune gpt-3.5-turbo on a corpus of Real Anal-
ysis texts, with the objective of providing helpful and perti-
nent information for Real Analysis questions found on the
Harvard Math Entrance Exam.

1. Previous Work

Yiran Wu, Feiran Jia, et al. chained GPT-4 and Python
to solve mathematical problems. They used GPT-4 to rec-
ognize math problems, then generate related python code.
From GPT-4’s response, the user proxy agent extracts all
code and executes them sequentially. Valid code from pre-
vious runs is recorded and will be executed together with
the new code to reflect the step-by-step reasoning progress
of the model. The results will be returned to GPT-4 and
GPT-4 will continue its problem-solving process. [1]

Imani, Du and Shrivastava used zero-shot chain-of-
thought prompting technique to generate multiple Alge-
braic expressions or Python functions [2]. They achieved
a high confidence level on their results and improved upon
the then-golden standard MultiArith dataset. Wang and Hu
used the same technique on more challenging questions and
prompts. Their process looked like this:

Stage 1: Input: [input-question] Let’s think step by step.

Output: [explanation]

Stage 2: Input: [input-question] Let’s think step by step.
[explanation] + Therefore, the answer is:

Output: [answer] [3]

2. Problem Statement and Goal

2.1. Problem Statement

State of the art large language models such as GPT-4 have
demonstrated these architectures’ superb ability at text com-
pletion for natural language prompts. However, a common
pitfall of these models is their inherent predisposition to
hallucinate information or reasoning when it comes to fac-
tual based queries. To date, there has been no meaningful
progress in the open problem of getting LLMs to produce
sound and accurate proofs to solve mathematical questions.
Namely, these models are currently unable to pass the Har-
vard Math entrance exam, which demonstrates mastery of
various higher level math fields such as Analysis, Topology,
Algebra and more. While the training data for GPT-4 is not
available to the general public, GPT-4 does demonstrate an
’understanding’ of these concepts and common questions
relating to them, suggesting that it has been exposed to the
respective fields at a sufficient level in its training process.

Thus, despite having enough exposure to understand
these questions, GPT-4 lacks the ability to close the gap be-
tween the prompt question and the derivation of the proof.

In this work, we first extract all theorems and defini-
tions from a myriad of real analysis texts [4–8], and then
use these to fine tune an instance of gpt-3.5-turbo, that we
coin the Lemma Finder, in order to approximate the under-
lying logical transformation that would allow any theorems
that imply the one in question to be derived. Once trained,
we then feed the Real Analysis questions from the Harvard
Math Entrance exam to this fine-tuned gpt-3.5-turbo model,
and use the returned results as additional context in prompt-
ing GPT-4 for a solution.

While this pipeline was designed with the restriction to
the Real Analysis field in mind, it may seamlessly be ex-
tended to other fields to provide for all encompassing model
proof derivers.

2.2. Goal

To fine-tune gpt-3.5-turbo on (theorem, lemmas) pairs in
Real Analysis texts to cultivate a model that is able to ac-
curately provide relevant and supplemental theorems that
could be used as a first non-trivial step in deriving solutions



for the real analysis questions from the Harvard Math En-
trance Exams.

3. Dataset and Methods
3.1. Dataset

We curate our dataset using real analysis theorems sourced
from mathematics textbooks [4–8]. The dataset will include
theorem statements and their corresponding antecedent the-
orems used in their proofs, as well as definitions necessary
for their constructions. Specifically, we cater our collection
of textbooks to match the requirements for the Real Anal-
ysis portion of the qualifying exam syllabus of the Harvard
Math Entrance Exam. [9].

3.1.1 Dataset Curation

:
In order to attain the dataset needed to fine tune the

Lemma Finder, we had to create a structured representation
of a theorem/definition/corollary/proposition label, its state-
ment, proof and all the corresponding statements referenced
in its proof.

To do so, we started by using the Mathpix API [10] to
convert online PDF files of [4–6] into markdown files with
the corresponding math and non-math text fully rendered.
The code is available on GitHub, see [11].

While initially a simple regex pattern was considered, we
realized early on that even within the scope of one author,
the variation in how these mathematical statements were
presented were too broad to be effectively captured by any
classical, algorithmic approach.

Figure 1. Theorem from [4] with multiple sub-statements.

Furthermore, in the cases where theorems would have
multiple sub-statements (as seen in 1), that on their own
would not give a complete definition, we would require an
agent to interpolate the text so as to make any statement
self-contained.

Our solution was to use a combination gpt-3.5-turbo-
1106 and gpt-4-1106-preview with function calling to pro-
duce consistent JSON outputs with the desired text. Gpt-
3.5-turbo-1106 was used exclusively for the cases where the
task required the JSON mode feature of the openai models

alone. We found that with our detailed system prompt, it
often produced incorrect JSON outputs or failed to prop-
erly inference the context needed for standalone statements.
Gpt-4-1106-preview was used in those cases where infer-
ence was required in addition to the JSON mode function-
ality, as well as if the context length of the prompt exceeded
its 16,385 token limit of gpt-3.5-turbo-1106.

Figure 2. gpt-4-1106-preview transformation of 1.

Our prompt consisted of 6 zero shot examples manually
drafted, as well as a JSON schema specifying the structure
of the output to be produced. In total, it reached just over
10,000 tokens. For this reason, the text was iterated in the
smallest gaps possible between subsequent theorems.

As can be seen from 2, gpt-4-1106-preview was able
to separate statements and make each self-contained. This
was especially important so that when a specific sub-case of
such a theorem would be referenced in a future proof, only
the necessary context, and not more, would be provided.
See [12].

The results of the first step our pre-processing pipeline
showcasing this can be found [13]. For each of the three
books [4–6], we have separate CSV files for theorems, def-
initions, corollaries, and propositions, with corresponding
labels, statement, and proofs for each.

Currently, we are now in the processes of an using ad-
ditional script involving gpt-4-1106-preview and gpt-3.5-
turbo-1106 in [14] in order to extract from each mathemat-
ical statement’s proof all the relevant corresponding state-
ments. In the subsequent section we discuss our current
approach so as to have some tangible training data to begin
fine tuning our model.

In addition, due to the Mathpix API failing to properly
account for the parenthesized formula number delimiters of
formulas spread throughout the text, we are building one
more script to parse these as efficiently as possible. The
code can be found [15]. This is to be able to insert their
meaning whenever they arise in proofs.

Figure 3. An example from [4] showcasing the necessity of accu-
rately capturing formula labels.



As can be seen from 3, accurately labeling and identify-
ing these formulas are paramount so as to be able to prop-
erly insert their meaning when providing our zero-shot con-
text hints via our Lemma Finder.

3.2. Lemma Finder

3.2.1 Training Set

The Lemma Finder is given as input a theorem, and tasked
with finding any relevant lemmas, hints, definitions, or other
theorems that could be relevant in deriving a solution.

In order to get the training data for the lemma finder, for
each theorem that we digitized, we extract from its proof
each reference to another theorem, definition and corollary,
and retrieve their statements. Using this response per the-
orem proof, we create a sequence of input theorems and
target lemmas such that we have our training dataset. This
was done using regex and pandas DataFrame manipulation.
See [16].

3.2.2 Fine-tuning job

The final dataset for training is a CSV file with the
columns ”Theorem” (contains the theorem number), ”The-
orem Statement”, and ”References”. Using this dataset, we
create a JSON Lines file that is required for fine-tuning gpt-
3.5-turbo. This file will be the final training set that is sup-
plied for the fine-tuning job. The dataset follows a conversa-
tional format and essentially contains following prompting:

{”role”: ”system”, ”content”: You are a mathematical
analysis tutor. Once given a real analysis statement or ques-
tion, you provide hints in the form of real analysis state-
ments that are needed to help solve or prove it.},

{”role”: ”user”, ”content”: Can you provide hints for
solving (or proving) the the following question (or state-
ment): Real Analysis theorem statement or question},

{”role”: ”assistant”, ”content”: (Hint, use the following:
theorems needed to solve the question or prove the state-
ment)}

Since the model is fine tuned on examples of mathemati-
cal statements and the statements that are then used in deriv-
ing their proofs, the expected output from our model should
be a list of real analysis theorems, definitions, corollaries,
and/or propositions that might help in solving or proving
said question or statement. This response will serve as use-
ful context for gpt-4, which will use added context and di-
rection to be able to better solve and prove the mathematical
analysis questions and statements from the Harvard Math
Entrance exam.

3.2.3 Using GPT Assistants

On November 6th, OpenAI introduced the ability to create
custom GPTs for specific purposes, called Assistants. An

Assistant can leverage models, tools and knowledge to re-
spond to queries. It has support for Code Interpreter, Re-
trieval and Function Calling tools.

We created a GPT using the Assistants API. We selected
gpt-4-1106-preview for the model, enabled the code inter-
preter and retrieval tools, and fed it our three books. We
provided the following as instructions for the assistant:

”You are a Math Tutor. You are given a set of questions
or statements on real, functional and complex analysis, and
you respond with the solutions or proofs to each. The train-
ing data is a set of books on those topics. They contain the-
orems, definitions and corollaries and their proofs if appli-
cable. These theorems should help to solve new questions
on real, complex and functional analysis.”

4. Evaluation Criteria
4.1. Baseline Models

We focused solely on real analysis, functional and complex
analysis questions. The initial step involved the conver-
sion of the Harvard math qualifying exams and their corre-
sponding solutions, spanning the years 2012 to 2022, from
PDF to LATEX format. This conversion was executed using
same procedure as in section 2 to ensure consistency across
datasets.

We gathered a collection of thirty questions in total.
These questions inherently contained explicit instructions;
therefore, they were inputted directly into GPT-4 model as
given without any additional directives.

The culmination of this process yielded a CSV file [17]
which serves as the testing set for our study.

We also used assistants on OpenAI’s developer plat-
form to generate some answers, serving as another baseline
model. The assistant can independently analyze reference
books in pdf format and provide comparisons of the effects
using our Lemma Finder, along with the assistant that oper-
ate on the same model (GPT-4-1106-preview).

We asked our custom GPT assistant to answer real anal-
ysis questions from the Fall 2023 set of Harvard Math PhD
Qualifying Exam [18]. This LATEXfile [19] shows the re-
sults.

5. Results
5.1. Questions used

There were three questions in total from the Fall 2023 Math
Harvard Entrance Exam that were denoted as Real Analysis
in topic.

The first question the was centered on Fourier Series
and establishing an inequality using certain boundary con-
ditions of a continuously differentiable function, the second
question tested knowledge of compact operators on Hilbert
spaces, and the third question required knowledge about in-



equalities in Lp spaces and guarantees on point-wise con-
vergence.

We leave all three of the questions and all answers from
each model in the Appendix.

5.2. Evaluation

Table 1. Summary of Question Solving with GPT Versions

Question Hints Provided Correctly Solved
GPT-4 No 1, 2
GPT-4 Yes 1, 2, Unsure
Playground GPT No 1, 2, Unsure

For Professor Drori: I did not want to give a con-
clusive judgement on the proof when I was unsure myself
of the validity of it. So, the rest of the outline will simply
comment on the hints provided for Question 3, and that it
made its response more rigorous and detailed. Specifically,
I am unsure if it is necessary to show that the set on which
the function f does not converge approaches 0 as was done
in the given solution. If so, then none of them got it correct.

Figure 4. Third Real Analysis Question

On this third question that we tested, GPT-4 and GPT-4-
turbo both followed a similar response in trying to use the
Dominated Convergence Theorem to prove the result. (See
Appendix C.1, C.2, C.3).

GPT-4 (without hints) specifically was the most simplis-
tic in its response, quoting only the Dominated Conver-
gence Theorem without any explicit derivation relating the
q-norms less than p to conclude that they converge to 0 in
the limit. (Appendix C.1).

Gpt-4-turbo does go the extra step of using Hölder’s in-
equality to relate the p-norm limsup given for the sequence
of functions to those q-norms for 1 ≤ q < p. (Appendix
C.3).

And GPT-4 with hints uses both of the above, as well as
explicitly mention the problem statement; allowing it to uti-
lize the fact that the norms are uniformly convergent. (Ap-
pendix C.2).

6. Discussion
6.1. Lemma Finder

In analyzing the Lemma Finder’s suggested hints, we found
that for the first two problems, they proved unuseful to
GPT4’s proof. (Appendix A.2, B.2).

Namely, for the second question, we even find in GPT-
4’s output that it suggests the provided hints are beyond the
scope of the question being asked. (Appendix C.2).

As can be seen in the Appendix, for all problems, the
Lemma Finder provides mathematical statements that are
more aligned for complex analysis or functional analy-
sis questions. We believe this to be primarily due to the
vastly outweighed number of training samples from Com-
plex Analayis and Functional questions [5, 6], as to Real
Analysis questions [4].

While the background reading material for the Real
Analysis portion of this exam specified these areas as refer-
ence, for a large language model like GPT-3.5 that is already
likely equipped with this general background, it might be
more appropriate to simply fine-tune on the Real Analysis
[9] portions alone to specialize for such questions.

6.2. Hallucination

From a preliminary analysis of the hints provided by our
Lemma Finder, we were unable to find any hallucinated
mathematical statements. So while the the training set im-
balance may have lead to unoptimized knowledge domain
for this exam, we conjecture that this Fine Tuned model
would hallucinate less with regards to mathematical rea-
soning; although further evaluation would be needed. (Ap-
pendix A.2.1, B.2.1, C.2.1).
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A. Results for Question 1
Question

Show that if f : [0, 1] → R is continuously differentiable
with f(0) = f(1) = 0 then∫ 1

0

f ′(x)2dx ≥ π2

∫ 1

0

f(x)2dx

with equality if and only if f is a multiple of x 7→
sin(πx).

A.1. GPT4 with no hints

To solve this problem, we will use the method of Fourier
series and properties of integrals. The key steps are as fol-
lows:

1. **Fourier Sine Series**: Since f is continuously dif-
ferentiable on [0, 1] with f(0) = f(1) = 0, it can be repre-
sented as a Fourier sine series. Let’s denote the Fourier sine

series of f as

f(x) =

∞∑
n=1

bn sin(nπx)

where bn are the Fourier coefficients given by

bn = 2

∫ 1

0

f(x) sin(nπx)dx.

2. **Parseval’s Theorem**: Parseval’s theorem states
that for a function g represented by a Fourier series, the in-
tegral of g2 over its period is equal to the sum of the squares
of its Fourier coefficients. Applying this to f gives∫ 1

0

f(x)2dx =

∞∑
n=1

b2n.

3. **Differentiation**: Differentiating the Fourier series
term by term, we get

f ′(x) =

∞∑
n=1

bnnπ cos(nπx).

Using Parseval’s theorem again for f ′,∫ 1

0

f ′(x)2dx =

∞∑
n=1

(bnnπ)
2.

4. **Comparing the Integrals**: Comparing the two in-
tegrals, we get∫ 1

0

f ′(x)2dx =

∞∑
n=1

(bnnπ)
2 ≥ π2

∞∑
n=1

b2n = π2

∫ 1

0

f(x)2dx

since n ≥ 1 for all terms in the series.
5. **Equality Condition**: Equality holds if and only

if all terms with n > 1 in the series for f are zero, i.e., f
is a multiple of sin(πx), since this is the only term where
n = 1.

Thus, we have shown that∫ 1

0

f ′(x)2dx ≥ π2

∫ 1

0

f(x)2dx,

with equality if and only if f(x) is a multiple of sin(πx).

A.2. GPT4 with Hints from GPT3.5

A.2.1 Hints

If a rectangular complex function is of bounded variation in
the (x, y)-plane in each of the rectangles

Rh,k = {x+ iy : 0 ≤ x ≤ h, 0 ≤ y ≤ k
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and if hR and kR are the one-dimensional projections of
R = Rh,k, thenR is of bounded variation in the plane, with

V (R) ≤ 8V (hR)V (kR)

In particular, every closed curve has Jordan measure 0.;ev-
ery simple closed curve, represented parametrically, has
winding number 1.; If f is a continuous complex function
in the closed unit disc and if f(z) ̸= 0 at every point in the
unit circle |t| = 1, then

f(0) = [Π(f)/(2iπ)] log f(1)

; If f is a meromorphic function in an anulus r < |z −
a| < R , and if neither a nor any other point is a pole of
f , then the number of zeros, counted with multiplication
according to multiplicity, is equal to the number of poles,
counted with multiplicity. Theorem 1 If T is a closed (not
necessarily bounded) set in the plane, and if δ > 0, then
there is a finite or infinite sequence {Rk} of rectangles such
that a function f in an open set Ω ⊂ X (where X is either
Euclidean space or the extended plane), which is continuous
in Ω except possibly at a set E of Jordan content zero, is
said to be Lebesgue integrable over any set A ⊂ Ω whose
closure is also contained in Ω.

A.3. Output from GPT4

To solve the given problem using the provided hints, we
need to adapt these concepts to the context of a real-valued
function defined on a real interval. The provided hints relate
to complex functions, bounded variation, Jordan measure,
winding numbers, and properties of meromorphic func-
tions. These are advanced concepts from complex analy-
sis and measure theory, which are not directly applicable
to the simpler setting of a real-valued function on an in-
terval. However, we can draw some inspiration from these
concepts to tackle the problem.

The problem is to show:∫ 1

0

f ′(x)2dx ≥ π2

∫ 1

0

f(x)2dx

with equality if and only if f is a multiple of x 7→ sin(πx),
for a continuously differentiable function f : [0, 1] → R
with f(0) = f(1) = 0.

Given that the provided hints are not directly applicable,
we can approach the problem using techniques from real
analysis:

1. **Wirtinger’s Inequality**: This problem is a clas-
sic application of Wirtinger’s inequality, which states that
for a function g defined on [0, 1] that is continuously dif-
ferentiable and satisfies g(0) = g(1) = 0, the following
inequality holds:∫ 1

0

g′(x)2dx ≥ π2

∫ 1

0

g(x)2dx.

The equality holds if and only if g(x) is a multiple of
sin(πx).

2. **Applying Wirtinger’s Inequality**: Applying this
inequality to our function f , we directly obtain the desired
result. The conditions on f (continuously differentiable
and f(0) = f(1) = 0) match the conditions required for
Wirtinger’s inequality.

The specifics of Wirtinger’s inequality involve Fourier
analysis and properties of sine functions, which are some-
what related to the complex analysis concepts in the hints
but are more directly applicable to the problem at hand.
Since Wirtinger’s inequality is a well-established result, its
detailed proof involves somewhat advanced mathematical
techniques that go beyond the scope of a simple explanation
but can be found in textbooks on real analysis or Fourier
analysis.

A.4. Custom GPT Assistant

To show the required inequality and the conditions for
equality, we can employ the theory of Sturm-Liouville op-
erators and use integration by parts. Here is a formal proof:

Consider ( f : [0, 1] → R) which is continuously dif-
ferentiable with ( f(0) = f(1) = 0 ). Define ( L ) to be the
differential operator ( L[g] = -g” ), and consider the eigen-
value problem

L[g] = λg, g(0) = g(1) = 0.

The eigenfunctions of this problem are (sin(nπx) )
with corresponding eigenvalues (λn = (nπ)2), ( n =
1, 2, 3, . . .).

The function ( f ) can be expanded into a Fourier sine
series due to its boundary conditions:

f(x) =

∞∑
n=1

an sin(nπx),

where ( an = 2
∫ 1

0
f(x) sin(nπx), dx ). Then we can

also write

f ′(x) =

∞∑
n=1

annπ cos(nπx).

Integrating the square of ( f’(x) ) and using Parseval’s
identity, we have:∫ 1

0

f ′(x)2, dx =

∞∑
n=1

a2n(nπ)
2.

Similarly, for ( f(x) ), we have:∫ 1

0

f(x)2, dx =

∞∑
n=1

a2n.



Now we can compare these two series term by term. For
each ( n ≥ 1 ), (

(nπ)2 ≥ π2

), thus we have:

∫ 1

0

f ′(x)2, dx =

∞∑
n=1

a2n(nπ)
2 ≥ π2

∞∑
n=1

a2n = π2

∫ 1

0

f(x)2, dx.

Equality occurs if and only if all terms for ( n ≥ 2 ) are
zero, that is, ( an = 0)forall(n ≥ 2 ). This means that (
f(x) ) can only contain the term ( a1 sin(πx) ), making ( f )
a multiple of ( x 7→ sin(πx) ).

Hence, we have shown the required inequality and the
condition for equality.

A.5. Solution by Harvard

Syllabus topics: Fourier series
Expand f in a Fourier sine series

f(x) =

∞∑
n=1

an sin(nπx)

Then by Parseval∫ 1

0

(f(x))2dx =
1

2

∞∑
n=1

a2n

For the other integral, we have f ′(x) =
π
∑∞

n=1 nan cos(nπx) (converging at least in L2 )
so, again by Parseval,∫ 1

0

(f ′(x))
2
dx =

π2

2

∞∑
n=1

n2a2n

The desired inequality follows because n2a2n ≥ a2n with
equality if and only if n = 1 or an = 0.

Remarks: This is Wirtinger’s inequality, whose appli-
cations include a proof of the isoperimetric inequality for
plane curves. The Fourier sine expansion is a natural
tool because the ratio

∫ 1

0
(f ′(x))

2
dx/

∫ 1

0
(f ′(x))

2
dx is a

Rayleigh quotient for the operator D : f 7→ f ′, as the
Fourier sine series expands f with respect to an orthog-
onal eigenbasis for D. There is also an elementary but
trickier proof by integration by parts, starting by writing
f(x) = g(x) sin(πx) for some continuous g : [0, 1] → R
that is differentiable on (0, 1), and eventually proving

∫ 1

0

(g(x) sin(πx))′2dx ≥
∫ 1

0

(g(x) sin(πx))2dx

with equality if and only if g′(x) = 0 for all x.

B. Results for Question 2

Additional appendix content.
Question
A bounded operator T : H → H on a Hilbert space H is

said to be compact if for any sequence {xn}∞n=1 in H such
that supn ∥xn∥ < ∞, the sequence {Txn}∞n=1 contains a
convergent subsequence.

Suppose that T : H → H is a compact operator. Show
that for any σ ∈ C\{0}, the eigenspace {ψ ∈ H : Tψ =
σψ} is finite-dimensional.

Show that if T : H → H is compact and S : H → H is
bounded, then T ◦ S is compact.

Suppose that T : H → H is compact and invertible.
Show that H is finite-dimensional.

B.1. GPT4 with no hints

These problems involve the properties of compact operators
on Hilbert spaces. Let’s solve them step by step:

1. Eigenspace of a Compact Operator is Finite-
Dimensional

**Problem Statement**: If T : H → H is a compact
operator, show that the eigenspace for any σ ∈ C\{0},
{ψ ∈ H : Tψ = σψ}, is finite-dimensional.

**Solution**: 1. **Contradiction Assumption**: As-
sume the eigenspace is infinite-dimensional. We can find a
sequence of orthonormal vectors {ψn} in this eigenspace.
2. **Compactness of T**: Since T is compact, {Tψn}
must have a convergent subsequence. 3. **Eigenvector
Property**: Tψn = σψn for each n, so {Tψn} = {σψn}.
4. **Orthogonality Contradiction**: The orthonormal-
ity of {ψn} means they cannot have a convergent subse-
quence (except trivially to zero, which contradicts σ ̸= 0).
5. **Conclusion**: Hence, the eigenspace must be finite-
dimensional.

2. Compactness of T ◦ S
**Problem Statement**: Show that if T : H → H is

compact and S : H → H is bounded, then T ◦S is compact.
**Solution**: 1. **Sequence Consideration**: Take

any bounded sequence {xn} in H. 2. **Boundedness of
S**: {Sxn} is also a bounded sequence since S is bounded.
3. **Compactness of T**: The compactness of T implies
{TSxn} = {T (Sxn)} has a convergent subsequence. 4.
**Conclusion**: Therefore, T ◦ S is compact.

3. Compact and Invertible Implies Finite-Dimensional
**Problem Statement**: If T : H → H is compact and

invertible, show that H is finite-dimensional.
**Solution**: 1. **Contradiction Assumption**: As-

sume H is infinite-dimensional. 2. **Sequence Construc-
tion**: Construct an orthonormal sequence {xn} in H. 3.
**Compactness of T**: {Txn} must have a convergent
subsequence. 4. **Invertibility of T**: Txn = 0 implies
xn = 0, but this contradicts the orthonormality of {xn}.



5. **Contradiction**: This leads to a contradiction, so H
must be finite-dimensional.

These proofs involve fundamental concepts in functional
analysis, particularly the properties of compact operators on
Hilbert spaces. Each solution is presented in a concise form,
focusing on the key steps necessary for the proofs.

B.2. GPT4 with hints from fine-tuned GPT3.5

B.2.1 Hints

As in the case of bounded linear operators on Banach
spaces, one can show that

T is compact if and only if T
maps bounded sets to precompact sets.

More explicitly, T : X → Y , where (X is a Frchet space
and Y is a topological vector

space), is compact if and only if for every bounded subset
M of X , TM (which is easily seen

to be bounded) has compact closure in Y .; If J is a com-
pact subset of the closed right half-plane, then the sets

MR(σ) and MB(σ) are sequentially compact subsets of
CR.

For 1 < p <∞BM is the closed unit ball of M , and for
p = ∞ its closure Mc is the containing unit ball which has
the additional property of being sequentially compact.

Suppose An ∈ L(sp)m, 1 ≤ p ≤ ∞,Λ ∈ L(sp)µ, and

ΛAn = AnΛ (n = 1, 2, 3, . . .)

Then λ [which was defined just before (5.15)], is a
bounded homomorphism of L (Xn), and

σ(Λ, A) = σ(λ) and ρ(Λ, A) = ρ(λ)

Suppose An ∈ L(sp)m, 1 ≤ p ≤ ∞,Λ ∈ L(sp)µ, and

ΛAn = AnΛ (n = 1, 2, 3, . . .)

Then λ [which was defined just before (5.15)], is a bounded
homomorphism of L (Xn), and

σ(Λ, A) = σ(λ) and ρ(Λ, A) = ρ(λ)

A trace ρ is a regular countably additive complex set func-
tion that is defined on the collection of all subsets in the

associated ring R, which are the finite unions of sets of the
form E(λ). For every set E ∈ R and for every sequence
En ∈ R(n = 1, 2, 3, . . .), the condition

E =

∞⋃
n=1

(En\En+1)

implies
ρ(E) = lim

n→∞
ρ (En)

B.2.2 GPT4 output with hints

To solve this question, we need to address three separate
but related statements about compact operators on a Hilbert
space H. Let’s address each statement one by one:

1. **Eigenspace of a Compact Operator is Finite-
Dimensional**:

We are given a compact operator T : H → H and need
to show that for any σ ∈ C\{0}, the eigenspace {ψ ∈ H :
Tψ = σψ} is finite-dimensional.

To prove this, assume for contradiction that the
eigenspace corresponding to σ is infinite-dimensional.
Then there exists an infinite sequence of orthonormal vec-
tors {ψn} in this eigenspace (by the property of Hilbert
spaces). Since T is compact, {Tψn} should have a con-
vergent subsequence. However, Tψn = σψn, and since
{ψn} is orthonormal, it does not have a convergent subse-
quence (no subsequence can converge because each pair of
elements is orthogonal and has norm 1). This contradiction
implies that our assumption is false, and thus the eigenspace
must be finite-dimensional.

2. **Composition of a Compact and a Bounded Operator
is Compact**:

Let T : H → H be a compact operator and S : H →
H be a bounded operator. We need to show that T ◦ S is
compact.

Take any bounded sequence {xn} in H. Since S is
bounded, {Sxn} is also a bounded sequence. As T is com-
pact, {TSxn} = {T (Sxn)} has a convergent subsequence.
Therefore, T ◦S maps bounded sequences to sequences with
convergent subsequences, which means T ◦ S is compact.

3. **Compact and Invertible Operator Implies Finite-
Dimensional Space**:

Suppose T : H → H is compact and invertible. We need
to show that H is finite-dimensional.

Since T is invertible, its kernel is trivial. This means 0 is
not an eigenvalue of T . By the spectral theorem for compact
operators, the non-zero spectrum of T consists of eigenval-
ues with finite multiplicity, and they accumulate only at 0.
However, since 0 is not an eigenvalue of T , T has only a
finite number of eigenvalues. Thus, H can be decomposed
into a direct sum of finite-dimensional eigenspaces of T ,
implying H itself must be finite-dimensional.



This addresses each of the three statements in your ques-
tion.

B.3. Custom GPT Assistant

All the operators considered are linear.
Question 1: Show that for any nonzero complex number

σ, the eigenspace {ψ ∈ H : Tψ = σψ} corresponding to a
compact operator T : H → H is finite-dimensional.

Proof: Suppose by contradiction that the eigenspace
Eσ = {ψ ∈ H : Tψ = σψ} is infinite-dimensional for
some nonzero σ ∈ C. Then there exists an infinite se-
quence of orthonormal vectors {ψn}∞n=1 in Eσ . Since T is
compact, the sequence {Tψn}∞n=1 must have a convergent
subsequence in H. However, for m ̸= n, ∥Tψn − Tψm∥ =
|σ|∥ψn − ψm∥ = 2|σ|, which contradicts the sequence be-
ing Cauchy and thus converging. Therefore, Eσ must be
finite-dimensional. □

Question 2: Show that if T : H → H is compact and
S : H → H is bounded, then T ◦ S is compact.

Proof: Let {xn}∞n=1 be a bounded sequence in H.
Since S is bounded, the sequence {Sxn}∞n=1 is also
bounded. Therefore, by the compactness of T , the sequence
{T (Sxn)}∞n=1 has a convergent subsequence, showing that
T ◦ S is compact. □

Question 3: Suppose that T : H → H is compact and
invertible. Show that H is finite-dimensional.

Proof: Assume for the sake of contradiction that H is
infinite-dimensional. Then it is possible to construct an
orthonormal sequence {xn}∞n=1 in H. Since T is invert-
ible, none of the Txn can be zero, and ∥Txn − Txm∥ =
∥T (xn − xm)∥ implies that the sequence {Txn} does not
have any convergent subsequences, as xn ⊥ xm form ̸= n.
This contradicts T being compact, hence H must be finite-
dimensional. □

B.4. Solution

Syllabus topics: Fourier series
Solution Expand f in a Fourier sine series

f(x) =

∞∑
n=1

an sin(nπx)

Then by Parseval∫ 1

0

(f(x))2dx =
1

2

∞∑
n=1

a2n

For the other integral, we have f ′(x) =
π
∑∞

n=1 nan cos(nπx) (converging at least in L2 )
so, again by Parseval,∫ 1

0

(f ′(x))
2
dx =

π2

2

∞∑
n=1

n2a2n

The desired inequality follows because n2a2n ≥ a2n with
equality if and only if n = 1 or an = 0.

Remarks: This is Wirtinger’s inequality, whose appli-
cations include a proof of the isoperimetric inequality for
plane curves. The Fourier sine expansion is a natural
tool because the ratio

∫ 1

0
(f ′(x))

2
dx/

∫ 1

0
(f ′(x))

2
dx is a

Rayleigh quotient for the operator D : f 7→ f ′, as the
Fourier sine series expands f with respect to an orthog-
onal eigenbasis for D. There is also an elementary but
trickier proof by integration by parts, starting by writing
f(x) = g(x) sin(πx) for some continuous g : [0, 1] → R
that is differentiable on (0, 1), and eventually proving

∫ 1

0

(g(x) sin(πx))′2dx ≥
∫ 1

0

(g(x) sin(πx))2dx

with equality if and only if g′(x) = 0 for all x.

C. Results for Question 3
Question

Suppose {fn} are measurable functions on the unit inter-
val [0, 1] ⊂ R such that {fn} converges to 0 almost every-
where, and for some p ≥ 1, we have supn ∥fn∥Lp([0,1]) <

∞. Show that {fn} converges to 0 in Lq([0, 1]) for all
1 ≤ q < p.

C.1. GPT4 with no hints

To solve this problem, we’ll use the concept of convergence
inLp spaces and the properties of measurable functions. We
are given that:

1. {fn} are measurable functions on the unit interval
[0, 1]. 2. {fn} converges to 0 almost everywhere. 3. For
some p ≥ 1, supn ∥fn∥Lp([0,1]) <∞.

We need to show that {fn} converges to 0 in Lq([0, 1])
for all 1 ≤ q < p.

**Solution:**
We use the Dominated Convergence Theorem (DCT).

For the DCT, we need two conditions to be satisfied: 1.
The sequence of functions {fn} converges pointwise almost
everywhere to a function f (which in this case is the zero
function). 2. There exists an integrable function g such that
|fn(x)| ≤ g(x) almost everywhere for all n.

The first condition is satisfied by assumption, as {fn}
converges to 0 almost everywhere.

For the second condition, we need to find such a function
g. Since supn ∥fn∥Lp([0,1]) < ∞, there exists an M < ∞
such that ∥fn∥Lp ≤ M for all n. This implies that |fn|p ≤
Mp in the L1 sense, as the Lp norm is the p-th root of the
integral of |fn|p.

Now, define g(x) = Mp for all x ∈ [0, 1]. Clearly,
|fn(x)|p ≤ g(x) almost everywhere, and since g(x) is con-
stant and finite over [0, 1], it is integrable.



With both conditions of the DCT satisfied, we can con-
clude that

∫ 1

0
|fn|q →

∫ 1

0
0q = 0 as n→ ∞ for 1 ≤ q < p.

This implies that ∥fn∥Lq → 0 as n → ∞ for 1 ≤ q < p,
which is what we wanted to prove.

C.2. GPT4 with hints from fine-tuned GPT3.5

C.2.1 Hints

If µ(X) < ∞ and p > 1, then Cc(X) is dense in Lp(µ).
Suppose X is locally compact, there is a positive Borel
measure λ on X with the following three properties: (a)
0 < λ(K) < ∞ if the compact set K satisfies HY P on
X . (b) If E and α isoscrews GIF 2.2.1 *[0, infty) then
λ∗(E) = α(0)λ∗(X) implies that λ∗(E) = αtλ∗(X) for
every t ∈ [0,∞). (c) If E is as in (b) and if m is an integer
then λ∗(E +m) = λ∗(E) .If, in addition, X is separable,
then there is a complete, separable metric in F -algebra M
of all real-valued Borel measurable functions on X , which
is unique in the sense that every Borel measurable function
whose domain is a Borel set in X is LebX -equivalent to
som;The function p:=¿[0,]=[,], a resolution of R. whose
properties (theorems 2.1.4 to 2.1.6) are stated typographi-
cally. Note by MCSWeb

p(E) =

∫
Ω̂

pEdµ, for every E Borel measurable in Ω.

(∗) λ = p ◦ µ on BΩ

The Borel setsE that satisfy pE holomorphic in ¡X¿, and
a large class of such sets is the classH . A function f : Ω →
V is said to be holomorphic in Ω, written f ∈ H(Ω), if f is
continuous at each point of Ω, and if the following limiting-
differene relations holds at each point and for all h in the
given

lim
h→0

(
Dj

dhj
f

)
(z) = f (j)(z) (j = 0, 1, 2, . . .)

,Dj standing for the usual multiple derivative and the limit
being taken within Ω.Note by MCSWeb:=¿¿,=¿¿

(W ·W̃f)(x) =

∫
Ω

W (x, ξ)W̃ (x, ξ)f(ξ)dµ(ξ), x ∈ Ω, (ii ′)

every x ∈ Ω, both sides of ¡¡=¿¿, are the identity operator
(i.e , onL2(µ)), and, therefore, so are the two sides of ¡¡=¿¿,
,¡¡=¿¿¿(f), for every f ∈ L2(µ), ;Suppose that h ∈ H(D)
in the open unit disk.

<< N(λ) = {f ∈ A : pf ∈ λ} >>

;The first part of the proof reads: By the maximum princi-
ple,

Rehext

(
λ+z
λ−z

)
≤ 0 if |z| < 1, therefore also

Rehext

(
1+z
1−z

)
≤ 0 and hence

hext ≤ hext(1/2, t)(t) = hext(t)

on[0, 2] Q.
Then we have

Lf = (I +Rf ) f (f ∈ H∞(D)) ,LebD -a.e.

(∗) λ = p ◦ µ, on BΩ

⌊H∞(D)dµ⌉ is a closed subspace of L∞(D,dµ), ;Sup-
pose that h ∈ H(D) in the open unit disk.;Suppose that
h ∈ H(D) in the open unit disk.;Suppose that h ∈
H(D) in the open unit disk. µ {t : hext(t) = 0} = 0
(Rudin-FA[1987,ex.18.3.5]), ;Suppose that h ∈ H(D) in
the open unit disk. µ {t : hext(t) = 0} = 0 ( Rudin-
FA[1987,ex.18.3.5] ), Binet’s or catalecticant’s formula: If
γ is an arc with endpoints w1 and w2, and if α and β are
numbers, then each of the mixed second order derivatives
¡¡![α, β]ψ(z) = λ2ψ(z) = 0, [β, α]ψ(z) = λ2ψ(z) =
0, [α, α]ψ(z) = λ ψ(z) = 0, [β, β]ψ(z) = λ ψ(z) = 0.

Suppose{
Ly = f, (a)

log ρ (y0) =
∫ 2π

0
dθ
2πP (eiθ) , (b)

C (ρ (y0)) ∈ Hρ(y0) and Rτ ◦ C = C on Ω̂

;

Φ(τ) =

∫
Γ

C(z)RτRz̄ezy0ds(z), τ ∈ Ω.

;
d

dτ
Φ(τ) = 0 if Im τ > 0 and

you obtain an equality of the λ’s in the following com-
mutative diagram:

H∞(D)
L→ L∞

ext[0, 2]
↓ p ↓ p∗
C

L→ L∞
ext[α(0), α(2)]

↓ ↓ Q∗

V
Q→ Y

Note that Q∗p∗ = Q , since p∗(gt) = gp∗(t)
and Q(g(t)) = Q1(t) by definition of Q , ¡¡[19,
182e]Formulation of the theorems of representation]¿¿
;Suppose that h ∈ H(D) in the open unit disk.;Suppose that



h ∈ H(D) in the open unit disk.;Suppose that h ∈ H(D)
in the open unit disk. If |λ| = 1 almost everywhere on T ,
then λ is a constant multiple of a Blaschke factor.

Note. If ¡¡![hext ∈ L1(µ)] >>hext ∈ L1(µ) for some
pointwise radial measure µ on T and (h ◦ et)(t) = 0 for
a.e. t, then (h ◦ ext)(t) = 0 for every t. Such func-
tions h are called cyclic (on D ). Wordy but easy. Let
¡¡[hext ∈ L1(µ)] >>hext ∈ L1(µ) for some pointwise ra-
dial measure µ on T and (h ◦ et)(t) = 0 for a.e. t, then
(h ◦ ext)(t) = 0 for every t. Such functions h are called
cyclic (on D ).If the complex power series

∑
cnz

n con-
verges at a p

hen the series

∑∞
n=0 cnrn

is a carriageen ¡X¿, no (positive) integer powers of z
are included in the series (save possibly the term an=ao),
;Poisson’s integral for the circle: ;

|P (T )| ≤
∫
Γ

|C|ds ≤ 2πmax
t∈Γ

|C(t)| = 2πκ (λ ∈ Ω)

;
Q(C) = C ◦ e

¡¡
(X)(Y + Z) = XY +XZ

(X + Y )Z = XZ + Y Z

[c(X)]Z = X[CZ] = C(XZ)

λ ∈ BΩ¿¿ ;Suppose that h ∈ H(D) in the open unit disk.
¡¡

(X)(Y + Z) = XY +XZ

(X + Y )Z = XZ + Y Z

[c(X)]Z = X[CZ] = C(XZ)

λ ∈ BΩ¿¿ ;Suppose that V and Y are as postulated,
and that G is a Banach space,;;<< l.MCSE[2, 340d] >>
Suppose << h ∈ H(D) in the open unit disk, and that
every h(w) = 0. Then h ≡ 0.¿¿¡¡Feller . ; ;

F (z) = G ◦ C(z) = G ◦R ◦Q(z) = G ◦R(τ) = G(τ)

;If f ∈ A and if f ◦Q1 = f on [0, 1], the range of f contains
a neighborhood of extX .;Suppose

{
Ly = f, (a)

log ρ (y0) =
∫ 2π

0
dθ
2πP (eiθ) , (b)

Φ(τ) =

∫ τ

y0

dρ(ζ)

ρ(ζ)

;

Φ(τ) =

∫ τ

y0

dρ(ζ)

ρ(ζ)
!; If

f ∈ A and if |f (Q1(t))| ≥ 1 for every t ∈ [−1, 1], then f
has no zeros in D .; ;Let Suppose

TV ∋ x→ J(x) ∈ X

; ; ;Suppose G is Zolotarev in

Ω = {z = x+ iy : 0 < x < π, y > 0}

and that Ω can be mapped by a partial fraction decomp-
sition into the exterior of the closed unit disk.. ;If the three
conclusions (Lemma 1.4.1 ¡¡[E]Haar¡1.6¿¿ ;

d2yi(t)dt2+λ2
i yi(t)=0 (−∞<t<∞)

; If [3],(KJ = J on Q, ¡¡[4, 649b]Theorem C]¿¿ ,

λ2i =
∫
Xi
ϕ′(ξ)dm (i = 1, 2)

; ;Suppose that h ∈ H(D) in the open unit disk.¡¡If
e1, e2, . . . , ed is the

standard basis vector of Cd, let
P (t) = P

(
eit
)

and

X(t)=P
(
eit
)[

TQ1

(
eit
)]

These remarks complete the proof [Feller 1950]. It is
convenient to collect the results as follows.If G is a Stieltjes
transform

Suppose



{
Ly = f, (a)

log ρ (y0) =
∫ 2π

0
dθ
2πP (eiθ) , (b)

B and B̄often denote the closed and open balls

Bρ (x0) = {x : ρ(x, x0) < r}, etc.
Suppose G is Zolotarev in

Ω = {z = x+ iy : 0 < x < π, y > 0}

and that Ω can be mapped by a partial fraction decomp-
sition into the exterior of the closed unit disk.. Suppose G
is a

harmonic function in the upper half plane and L = 0 in
D, SupposeG is a harmonic function in the upper half plane
and L ≥ 0 in D, ;

hr = h ◦ er

Suppose G is a harmonic function in the upper half plane
and L ≥ 0 in D,

Suppose that h ∈ H(D) in the open unit disk. If the
complex power series

∑
cnz

n converges at a p
Also,

Q1(t) =
1− t

1 + t

, and
ext
(
−t2

)
= eit (t ∈ (0, π/2))

.Then

q—
(
0, π2

)
>I ,

and, by necessity,

ext(t2) = eit

C.2.2 GPT4 output with hints

To solve the given problem, let’s break it down into key
points and apply the provided information step by step.

1. **Given Information**: - {fn} are measurable func-
tions on the unit interval [0, 1] ⊂ R. - {fn} converges to 0
almost everywhere. - For some p ≥ 1, supn ∥fn∥Lp([0,1]) <
∞. - We need to show that {fn} converges to 0 in Lq([0, 1])
for all 1 ≤ q < p.

2. **Approach**: - **Convergence Almost Every-
where**: Since {fn} converges to 0 almost everywhere,
for almost every x ∈ [0, 1], fn(x) → 0 as n →
∞. - **Uniform Boundedness in Lp**: The condition

supn ∥fn∥Lp([0,1]) < ∞ implies that the sequence {fn} is
uniformly bounded in the Lp norm.

3. **Using Density of Continuous Functions**: -
Since Cc(X) (continuous functions with compact support)
is dense in Lp(µ) for p > 1 and µ(X) < ∞, we can ap-
proximate fn by a sequence of continuous functions gn in
Lp norm.

4. **Convergence in Lq Norm for 1 ≤ q < p**: - By
Hölder’s inequality, for 1 ≤ q < p, the Lq norm of a func-
tion is less than or equal to its Lp norm. This is because
[0, 1] is of finite measure. - Since {fn} converges to 0 al-
most everywhere and is uniformly bounded in Lp, by the
Dominated Convergence Theorem, {fn} also converges to
0 in Lq for every q < p.

5. **Conclusion**: - Therefore, {fn} converges to 0 in
Lq([0, 1]) for all 1 ≤ q < p.

This approach utilizes the provided information about
the density of continuous functions in Lp spaces, the Domi-
nated Convergence Theorem, and Hölder’s inequality to es-
tablish the required convergence.

C.3. Custom GPT Assistant

Question: Suppose {fn} are measurable functions on
the unit interval [0, 1] ⊂ R such that {fn} converges
to 0 almost everywhere, and for some p ≥ 1, we have
supn ∥fn∥Lp([0,1]) < ∞. Show that {fn} converges to 0
in Lq([0, 1]) for all 1 ≤ q < p.

Proof: Given the conditions, we apply the Dominated
Convergence Theorem for Lq spaces, where 1 ≤ q < p.

To use this theorem, we first show that |fn|q is dominated
by an integrable function that does not depend on n.

We know supn ∥fn∥
p
Lp = M < ∞, which means that

for any n,
∫ 1

0
|fn|p dx ≤ M . Now, for any 1 ≤ q < p, we

can use Hölder’s inequality with exponents p
q and p

p−q to
get

(∫ 1

0

|fn|q dx
) p

q

≤
(∫ 1

0

|fn|p dx
)(∫ 1

0

1
p

p−q dx

) p−q
q

=

∫ 1

0
|fn|p dx ≤M.

So,
∫ 1

0
|fn|q dx ≤ M

q
p , which implies ∥fn∥qLq ≤ M

q
p

for all n.
Next, since the functions fn converge to 0 almost every-

where and |fn|q is bounded above by M
q
p which is inte-

grable on [0, 1],

lim
n→∞

∫ 1

0

|fn|q dx = 0.

This limit follows directly due to the Dominated Conver-
gence Theorem.



Thus, we have shown that {fn} converges to 0 in
Lq([0, 1]) for all 1 ≤ q < p. □

C.4. Solution

Syllabus topics: Lp spaces
Solution: Fix any ε > 0. Set Eε,n :=

{x ∈ [0, 1] : |fn(x)| ≥ ε}. We first have

∫ 1

0

|fn(x)| qdx =

∫
Eε,n

|fn(x)|q dx+

∫
EC
ε,n

|fn(x)|q dx

≤
∫
Eε,n

|fn(x)|q dx+ εq.

By Hölder,

∫
Eε,n

|fn(x)|q dx ≤

(∫
Eε,n

|fn(x)|p dx

) q
p

(µ (Eε,n))α(p,q)

By assumption, the first factor on the RHS is bounded
uniformly in n and µ (Eε,n) → 0 as n→ ∞. Thus,

lim sup
n→∞

∫ 1

0

|fn(x)|q dx ≤ εq

Since ε > 0 is arbitrary, this means the limsup on the
left-hand side is 0 .
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